Time 3.0 Hours

OPEN BBOK EXAM

Question (1)

a- If $S^{(l)}$ and $S^{(u)}$ denote the perimeters of the inscribed and circumscribed polygons, respectively, as shown in Figure 1.3, prove that :

$$
S^{(l)} \leq S \leq S^{(u)}
$$

b- Generate the finite element mesh for the two-dimensional object shown in Figure 2.37 using the quadtree method.
c- The quadratic interpolation function of a one-dimensional element with three nodes is given by :

$$
\varphi(x)=\alpha_{1}+\alpha_{2} x+\alpha_{3} x^{2}
$$

If the x coordinates of nodes 1,2 , and 3 are given by 1,3 , and 5 , respectively, determine the matrices $[\eta],[\eta]^{-1}$, and $[\mathrm{N}]$ of Eqs.(3.17), (3.18), and (3.20).

Question (2)

a- Consider the shape functions, $N_{i}(x), N_{j}(x)$, and $N_{k}(x)$, corresponding to the nodes I, j, and k of the one-dimensional quadratic element described before. Show that the shape function corresponding to a particular node $i(j$ or k) has a value of one at node $i(j$ or k) and zero at the other two nodes j (k or i) and k (i or j).
b- The Cartesian (global) coordinates of the corner nodes of a quadrilateral element are given by $(0,-1),(-2,3),(2,4)$, and $(5,3)$. Find the coordinates transformation between the global and local (natural) coordinates. Using this, determine the Cartesian coordinates of the point defined by $(r, s)=(0.5,0.5)$ in the global coordinate system.
c- Determine the Jacobian matrix for the quadrilateral element defined in problem (2-b). Evaluate the Jacobian matrix at the point $(r, s)=(0.5,0.5)$.

Question (3)

a- Evaluate the integral :

$$
I=\int_{-1}^{1}\left(\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}\right) d x\right.
$$

Using the following methods and compare the results:
i- Two-point Gauss integration
ii- Analytical integration.
b- Evaluate the partial derivatives $\left(\partial N_{l} / \partial x\right)$ and $\left(\partial N_{l} / \partial y\right)$ of the quadrilateral element shown in Figure 4.30 at the point ($r=1 / 2, s=1 / 2$) assuming that the scalar field variable φ is approximated by quadratic interpolation model.
c- The deflection of a beam on an elastic foundation is governed by the equation $\left(d^{4} w / d x^{4}+w=1\right.$, where x, and w are dimensionless quantities. The boundary conditions for simply supported beam are given by transverse deflection $=w=0$ and bending moment $=\left(d^{2} w / d x^{2}\right)=0$. By taking a twoterm trial solution as $w(x)=C_{1} f_{1}(x)+C_{2} f_{2}(x)$ with $f_{1}(x)=\sin \pi x$ and $f_{2}(x)=\sin 3 \pi x$, find the solution of the problem using the Galerkin method.

Question (4)

a- The cantilever beam shown in Figure 5.10 is subjected to a uniform load w per unit length. Assuming the deflection as

$$
\varphi(x)=c_{1} \sin \frac{\pi x}{2 l}+c_{2} \sin \frac{3 \pi x}{2 l}
$$

Determine the constants c_{1} and c_{2} using the Rayleigh-Ritz method.
b- Consider the differential equation

$$
\frac{d^{2} \varphi}{d x^{2}}+400 x^{2}=0 \quad 0 \leq x \leq 1
$$

With boundary conditions $\varphi(0)=0, \quad \varphi(1)=0$ The functional of the problem to be extremized is given by

$$
I=\int_{0}^{1}\left\{-\frac{1}{2}\left[\frac{d \varphi}{d x}\right]^{2}+400 x^{2} \varphi\right\} d x
$$

Find the solution of the problem using the Rayleigh-Ritz method using a one term solution as $\quad \varphi(0)=c_{1} x(1-x)$
c- If the elements characteristic matrix of an element in the finite element grid shown in Figure 6.4 is given by

$$
\left[K^{(e)}\right]=\left[\begin{array}{llll}
3 & 1 & 1 & 1 \\
1 & 3 & 1 & 1 \\
1 & 1 & 3 & 1 \\
1 & 1 & 1 & 3
\end{array}\right]
$$

Find the overall or system characteristic matrix after applying the boundary conditions $\varphi_{i}=0, i=11-15$. Can the bandwidth be reduced by renumbering the nodes?

Question (5)

a- Find the eigenvalues and eigenvectors of the following matrix using the Jacobi method:

$$
[\mathrm{A}]=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

b- Solve the following system of equations using the Cholesky decomposition method using (i) $[L][L]^{\mathrm{T}}$ decomposition and (ii) $[\mathrm{U}]^{\mathrm{T}}[\mathrm{U}]$ decomposition:

$$
\begin{array}{r}
5 x_{1}+3 x_{2}+x_{3}=14 \\
3 x_{1}+6 x_{2}+2 x_{3}=21 \\
x_{1}+2 x_{2}+3 x_{3}=14
\end{array}
$$

c- Determine whether the following state of strain is physically realizable :
$\varepsilon_{\mathrm{xx}}=c\left(x^{2}+y^{2}\right), \varepsilon_{y y}=c y^{2}, \varepsilon_{\mathrm{xy}}=2 c x y, \varepsilon_{z \mathrm{z}}=\varepsilon_{\mathrm{yz}}=\varepsilon_{\mathrm{zx}}=0$
Where c is constant.
d- Consider the following state of stress and strain :
$\sigma_{x x}=x^{2}, \sigma_{y y}=y^{2}, \varepsilon_{x y}=-2 x y, \sigma_{z z}=\varepsilon_{x z}=\varepsilon_{y z}=0$
Determine whether the equilibrium equations are satisfied.

Question (6)

a- Consider the following condition :
$\varepsilon_{x x}=c_{1} x, \varepsilon_{y y}=c_{2}, \varepsilon_{z z}=c_{3} x+c_{4} y+c_{5}, \varepsilon_{y z}=\varepsilon_{z x}=0$
Determine whether the compatibility equations are satisfied.
b-A beam is fixed at one end, supported by cable at the other end, and subjected to a uniformly distributed load of $50 \mathrm{lb} / \mathrm{in}$. as shown in Figure 9.26.
i- Derive the finite element equilibrium equations of the system by using one element for the beam and one element for the cable.
ii-Find the displacement of node 2 .
iii- Find the stress distribution in the beam.
iv- Find the stress distribution in the cable.
c- A water tank of weight W is supported by a hollow circular steel column of inner diameter d , wall thickness t , and height h . The wind pressure acting on the column can be assumed to vary linearly from 0 to $p_{\text {max }}$, as shown in Figure 9.32. Find the bending stress induced in the column under the loads using one-beam element

$$
W=15,000 \mathrm{lb}, \quad h=30 \mathrm{ft}, \quad d=2 \mathrm{ft}, \quad t=2 \mathrm{in}, \quad p_{\max }=200 \mathrm{psi}
$$

d- Determine the stress distribution in the two members of the frame shown in Figure 9.28. Use on finite element for each member of the frame.

